# What are resistances in parallel

 R.total Formula:  R.total = R1 · R2 / (R1 + R2)

You're welcome two Enter resistance values, the third value of the parallel connection will be calculated.
It can also be the total resistance R.total and a resistance R.1 or R.2 can be entered.
When entering a decimal, the is always Point to use.

Equation or formula for calculating the parallel connection of two resistors R.1 other R.2:

Calculation of the necessary parallel resistance R.2, if R.1 and the total resistance R.total given is:

 Solving the formula R.total= (R.1· R.2) / (R.1 + R.2) to R.1:1/R.total = 1/R.1 + 1/R.2R.total·R.1·R.2[1/R.total = 1/R.1 + 1/R.2]R.1·R.2 = R.total·R.2 + R.total·R.1R.1·R.2 − R.total·R.1 = R.total · R.2R.1(R.2 − R.total) = R.2·R.totalLast step:R.1 = R.2 · R.total / (R.2 − R.total)respectively:R.2 = R.1 · R.total / (R.1 − R.total)

Note: Calculating the parallel resistances is exactly the same as calculating
the parallel connection of coils or the series connection of capacitors.

• Find the resistances R.1 and R.2if the total resistance is known: •

Calculation: resistor parallel connection by iteration
Find of R.1 and R.2 if the total resistance is known

● Calculate many parallel resistances ●

 Here you can calculate the total resistance - up to 10 resistors connected in parallel. Enter the resistance values ​​in the fields below and when all values ​​are entered, then click on 'Calculation'. The result is given below. As a test you can enter the values ​​4, 6 and 12 ohms; the result should be 2 ohms. Attention: Clearing the fields by hand does not delete the saved values.When entering a decimal, the is always Point to use.

Ohm's law - Ohm's law

Two resistors connected in parallel and the calculated total resistance
Resistances from 1 to 100 ohms

 R2 R1 1 1,5 2,2 3,3 4,7 6,8 10 15 22 33 47 68 1 0,5 0,6 0,69 0,77 0,83 0,87 0,91 0,93 0,95 0,97 0,98 0,99 1,5 0,6 0,75 0,89 1,03 1,14 1,22 1,30 1,36 1,40 1,43 1,45 1,46 2,2 0,69 0,89 1,1 1,32 1,50 1,66 1,82 1,92 2,0 2,06 2,10 2,13 3,3 0,77 1,03 1,32 1,65 1,94 2,22 2,48 2,70 2,87 3,00 3,08 3,14 4,7 0,83 1,14 1,50 1,94 2,35 2,78 3,20 3,58 3,87 4,12 4,27 4,39 6,8 0,87 1,22 1,66 2,22 2,78 3,40 4,05 4,68 5,19 5,64 5,94 6,18 10 0,91 1,30 1,82 2,48 3,20 4,05 5,0 6,0 6,9 7,7 8,3 8,7 15 0,93 1,36 1,92 2,70 3,58 4,68 6,0 7,50 8,9 10,3 11,4 12,2 22 0,95 1,40 2,00 2,87 3,87 5,19 6,9 8,9 11,0 13,2 15,0 16,6 33 0,97 1,43 2,06 3,0 4,12 5,64 7,7 10,3 13,2 16,5 19,4 22,2 47 0,98 1,45 2,1 3,08 4,27 5,94 8,3 11,4 15,0 19,4 23,5 27,8 68 0,99 1,46 2,13 3,14 4,39 6,18 8,7 12,2 16,6 22,2 27,8 34,0

Note: This calculator can also solve other math problems.
Calculating parallel-connected resistors is exactly the same as
those for inductors connected in parallel or capacitors connected in series.

 Converted power in a resistor: P. = U·I., P. = U2 / R., P. = I.2 ·R..

 Note: For the resistors in series is the electricity the same for each resistance and for resistors in parallel, that is tension the same for each resistor.